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Logistics

Final papers

Due Wednesday April 30 (last day of class before reading period)

If you need an extension on the paper, you don’t have to ask
permission. We’ll accept papers until Monday, May 5 at 5pm

By tonight you should receive memos from the group re-replicating
your paper. If you haven’t sent your memo to the other group, do this
as soon as possible
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Logistics

Other logistics

Problem set 6 will be posted tonight. It’s due a week from today.

Gov2001 party at Gary’s house!
Saturday, April 19 at 12:30
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Last week’s assessment question

Data for assessment question

The adjacency matrix:

Y =


0 1 1 1 0
1 0 0 0 0
1 0 0 0 1
1 0 0 0 1
0 0 1 1 0


The party of the five senators:

x = (0, 0, 1, 1, 1)

The upper triangle of the adjacency matrix, in vector form:

Yij ∀ i < j = (1, 1, 1, 0, 0, 0, 0, 0, 1, 1)

Indicator variables for whether each of
(5
2

)
pairs of senators are in the

same party
|Xi − Xj | ∀ i < j = (0, 1, 1, 1, 1, 1, 1, 0, 0, 0)
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Last week’s assessment question

Data for assessment question

Colors indicate party of each of the 5 senators.
Lines connecting a pair of senators indicates that they cosponsored
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Last week’s assessment question

The model

We’re told that the model for our data is:

Yij = Bern(πij)

πij =

{
ps if Xi = Xj

pd if Xi 6= Xj
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Last week’s assessment question

Question 1A

Rewrite the systematic component as a one-line equation, where πij is on the left-hand
side and the right-hand side is expressed in terms of ps , pd , and |Xi − Xj |. (Hint:
|Xi − Xj | is 0 when Xi = Xj and 1 when Xi 6= Xj). Note also that you should not
reparametrize the parameters.

How can we rewrite the systematic component

πij =

{
ps if Xi = Xj

pd if Xi 6= Xj

so that it’s a single equation?

Since |Xi − Xj | can only be either 0 or 1, we can use it as an indicator variable to switch
between ps and pd :

πij = ps + (pd − ps) · |Xi − Xj |
or

πij = p
|Xi−Xj |
d p

1−|Xi−Xj |
s
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Last week’s assessment question

Question 1B

Write the log likelihood.

L(πij |y, x) =
∏
i<j

(πij)
yij (1− πij)1−yij

Now substitute in the systematic component you solved for in 1A:

∑
i<j

[yij ln(ps + (pd − ps) · |Xi − Xj |) + (1− yij) ln(1− ps − (pd − ps) · |Xi − Xj |)]

or

∑
i<j

[
yij ln(p

|Xi−Xj |
d p

1−|Xi−Xj |
s ) + (1− yij) ln(1− p

|Xi−Xj |
d p

1−|Xi−Xj |
s )

]
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Last week’s assessment question

Question 1D

Optimize and find the MLE.

p̂s = 0.75
p̂d = 0.33

These results should be intuitive from the graph:
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Last week’s assessment question

Question 1G

Simulate 1000 networks where all 5 senators are from the same party. Use
these simulations to calculate the probability that there are more than 5
cosponsorship links among the

(5
2

)
possible pairs of senators

simp <- rmvnorm(1000, mean=optim.out$par,

sigma=(solve(-optim.out$hessian)))

simp[simp>1] <- 1

simp[simp<0] <- 0

Since our network only has senators of the same party we only care about
the first column

simp <- simp[,1]

simy <- rbinom(length(simp), size = 10, prob = simp)

mean(simy>5)
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Counts: Poisson Model

Counts

↑ Arithmomaniacs love count
models

Any time your outcome variable is a
count of the number of times as event
happened, you’ll want to use a count
model.

If you know the number of trials and
the probability of success is bigger than
a really tiny decimal, you’ll want to use
a Bernoulli or binomial model

If the number of “trials” is too large
(or impossible) to easily count and the
rate of success is very low, you’ll want
to use another type of count model
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Counts: Poisson Model

Examples:

1. number of terrorist attacks in a given year

2. number of publications by a professor in a career

3. number of times word “hope” is used in a Barack Obama speech

4. number of raindrops that hit a 1” x 1” square on the sidewalk during
a rainstorm

5. number of correctly predicted games in your March Madness bracket
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Counts: Poisson Model

The Poisson Distribution

The Poisson distribution is a discrete probability distribution which gives
the probability that some number of events will occur in a fixed period of
time.
Here’s the probability density function (PDF) for a random variable Y that
is distributed Pois(λ):

Pr(Y = y) =
λy

y !
e−λ
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Counts: Poisson Model

Pr(Y = y) =
λy

y !
e−λ

Suppose Y ∼ Pois(3). What’s Pr(Y = 4)?

Pr(Y = 4) =
34

4!
e−3 = 0.168.

Poisson Distribution

y

P
r(

Y
=

y)

0
0.

05
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1
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15

0 2 4 6 8 10
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Counts: Poisson Model

The Poisson Distribution

One more time, the probability mass function (PMF) for a random variable
Y that is distributed Pois(λ):

Pr(Y = y) =
λy

y !
e−λ

Using a little bit of geometric series magic, it isn’t too hard to show that

E[Y ] =
∞∑
y=0

y · λ
y

y !
e−λ = λ

It also turns out that Var(Y ) = λ, a feature of the model we will discuss
later on.
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Counts: Poisson Model

The Poisson Distribution

Poisson data arises when there is some discrete event which occurs
(possibly multiple times) at a constant rate for some fixed time period.

Another way to state this constant rate assumption is that the probability
of an event occurring at any moment is independent of whether an event
has occurred at any other moment.

So whether or not raindrop i hits our 1” x 1” square on the sidewalk
doesn’t affect the probably that raindrop i + 1 hits the within the square

Whether there’s a civil war in country i at time t doesn’t affect whether
there’s a civil war in country j at time t + 1
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Counts: Poisson Model

The Poisson Model for Event Counts

So what’s the model?

1 The stochastic component:

Yi ∼ Pois(λi )

2 The systematic component:

λi = exp(Xiβ)

In the Generalized Linear Models framework, exp(Xiβ) is our link function.
Why do we use this?

Because λi is the rate parameter which must be greater than zero, and
exp(Xiβ) > 0
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Counts: Poisson Model

Deriving the log likelihood of the Poisson Model

If the PMF of the Poisson is:

Pr(Y = y) =
λy

y !
e−λ

then the likelihood is:

L(λ|y) =
n∏

i=1

λyii
yi !

e−λi

And the log-likelihood is:

`(λ|y) = log

[ n∏
i=1

λyii
yi !

e−λi

]

=
n∑

i=1

log

[
λyii
yi !

e−λi

]
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Counts: Poisson Model

Deriving the log likelihood of the Poisson Model

=
n∑

i=1

log

[
λyii
yi !

e−λi

]

=
n∑

i=1

yi log λi − log(yi !)− λi

∝
n∑

i=1

yi log λi − λi

`(β|y ,X ) ∝
n∑

i=1

yi log(exp(Xiβ)− exp(Xiβ)

∝
n∑

i=1

yiXiβ − exp(Xiβ)
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Counts: Poisson Model

Example: Terrorist attacks

Now let’s look at an application of the Poisson model.

The data: Outcome variable: the number of deaths from terrorist attacks
in a particular country over a 30 year period.

Explanatory variable: the unemployment rate in each month during the 30
year period.
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Counts: Poisson Model

Example: Terrorist attacks

The model: Let Yi = # of terrorist attack deaths in a month. Our sole
predictor for the moment will be: U = the unemployment rate during that
month.

Our model is:
Yi ∼ Pois(λi )

and
λi = E (Yi |Ui ) = exp(β0 + β1 · Ui )

or more generally:
λi = E (Yi |Xi ) = exp(Xiβ)
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Counts: Poisson Model

Let’s estimate this thing!

We could estimate it by coding up the log likelihood function:

pois.ll <- function(par, y, x){

x <- as.matrix(cbind(1, x))

xb <- x %*% par

sum(y * xb - exp(xb))

}

And then we could use optim():

opt.pois <- optim(par = rep(0,2),

fn = pois.ll,

x = attacks$unemploy,

y = attacks$deaths,

hessian = T,

method = "BFGS",

control = list(fnscale = -1))
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Counts: Poisson Model

Let’s estimate this thing!

Or we could use Zelig, since the Poisson model is already incorporated into
that package:

require(Zelig)

zel.pois <- zelig(deaths ~ unemploy,

data = attacks,

model = "poisson")

summary(zel.pois)$coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.230495 0.04203808 29.27095 2.430411e-188

unemploy 15.668797 0.17671220 88.66845 0.000000e+00
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Counts: Poisson Model

Checking our model

We now have estimates of our coefficients. Are we ready to move on to
generating quantities of interest and pretty graphs?

Not yet

First we need to check our assumption that the data generation process
was Poisson. How can we do this? What might we look for?
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Counts: Poisson Model

Dispersion

Recall from earlier that with the Poisson distribution, we assume that
E (Y |X ) = Var(X |X ) = λ

If E (Y |X ) < Var(X |X ) then our data are overdispersed.
If E (Y |X ) > Var(X |X ) then our data are underdispersed.

How could we check for over or underdispersion?
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Counts: Poisson Model

Overdispersion

A lot more than 95% of our data is falling outside the 95% confidence
intervals, so it looks like we have overdispersion
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Adding extra parameters

Overdispersion is a problem with the Poisson model in part because the
model only has one parameter, λ, which restricts the variance to be a
specific value

Recall from the Learning Catalytics question from Monday’s lecture that
this is a similar problem with exponential duration models, stylized normal
models, and other models with only one parameter.

But it’s not a problem with Bernoulli models.

Why the heck not?

Before we figure out why the heck the Bernoulli model is different from
Poissons, exponentials, and others, let’s take a step back.
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Adding extra parameters

Big picture

Remember that when we’re modeling, our big goal is to take data that’s
messy and complicated and summarize it using a distribution

Then we take that distribution and its parameters and make assessments
about our original messy data.

When we do this, we’re essentially collapsing our big messy data down to
a few numbers (the parameters)
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Adding extra parameters

Let’s look at an example of some data. Here’s a histogram of an outcome
variable you might be interested in modeling:

outcome variable

F
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00

It appears that this data was
generated from a stylized normal
distribution, N(µ, 1).

If we used that as our model, we’d
be summarizing our dataset using
just one number, µ
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Adding extra parameters

What if our data looked like this? Would we want to use a stylized normal
distribution?

outcome variable

F
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No we wouldn’t, because if we did
we’d be making the incorrect
assumption that the variance was 1.

To properly describe these data we’d
want to use two parameters, one for
the mean and one for the variance.

Are we now fully characterizing the
distribution of these data? Is there
any information we could add to our
model to better summarize the
data?
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Adding extra parameters

What if our outcome looked like this? What assumption would we be violating if
we used a N(µ, σ2) model?

outcome variable
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The data are skewed and not
symmetric, as the normal distribution
assumes.

But we could model this by using the
skew-normal distribution, which is a
normal distribution with a third
parameter to model the skewness.

Stephen Pettigrew Count and Duration Models April 2, 2014 35 / 61



Adding extra parameters

Why does this matter?

So then what’s the point of all of this?

When you choose to model your data using just about any distribution,
you’re making some assumptions about the data.

Generally you could relax those assumptions by adding another parameter
which helps you to better characterize the attributes of the data, like the
mean, variance, skewness, kurtosis, etc.
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Adding extra parameters

Why does this matter?

Then why don’t we do this? Or put another way, what’s one way to
perfectly capture all the information in our dataset?

Print off a spreadsheet with all your observations and variables and give it
to your reader to interpret. Obviously that’s not helpful

The more and more parameters we add to our model, the closer we get to
this extreme and the more our estimates become tightly fit to our specific
dataset.

There’s a tradeoff between summarizing too little and summarizing too
much. Another way to say this is that you have to strike a balance
between underfitting your model and making incorrect assumptions about
the data, and overfitting your model and not being able to make any
general conclusions about the world outside of your dataset
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Adding extra parameters

Why are binary outcome variables different?

So adding parameters to models can help to relax assumptions and better
fit the data.

Why don’t we have to do this to get the variance correct in binary
outcome models (i.e. models with Bernoulli stochastic components)?

Why is it that binary outcome models will have the correct variance with
only one parameter, π, but exponential or Poisson models often won’t?
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Adding extra parameters

Why are binary outcome variables different?

If the figure below shows binary outcome data for 1000 observations, how
many numbers do you need to fully describe the data generation process
for each of those 1000 observations?

Failures Successes

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

You can fully characterize the
underlying data generation process
for this outcome by just knowing
that π = 0.7.

With binary outcome models there’s
no other information to be squeezed
out of your data except this
proportion, so adding another
parameter to model variance (or
anything else) can’t help you to
better describe the data generation
process.
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Counts: Negative Binomial Model

The Negative Binomial Model

Recall that with our Poisson model we found evidence of overdispersion,
meaning that the assumption that Var(Y ) = E (Y ) = λ was violated in
the data.

Just like we saw with the jump from stylized normal to normal (or normal
to skewed normal) we can add a parameter to relax this assumption.

In particular, we can derive a different distribution which relaxes the
constant rate assumption and independence of events assumption of the
Poisson

The trick is to assume that λ varies according to a new parameter we will
introduce call ζ.
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Counts: Negative Binomial Model

Alternative Parameterization

Let’s derive the negative binomial model by adding a parameter to the
Poisson.

Here’s the new stochastic component:

Yi |λi , ζi ∼ Poisson(ζiλi )

ζi ∼ Gamma

(
1

σ2 − 1
,

1

σ2 − 1

)
Note that this Gamma distribution has a mean of 1. Therefore,
Poisson(ζiλi ) has mean λi .
Note that the variance of this new Poisson distribution is σ2 − 1. This
means that as σ2 goes to 1, the distribution of ζi collapses to a spike over
1.
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Counts: Negative Binomial Model

Alternative Parameterization

Using a similar approach to that described in UPM pgs. 51-52 we can
derive the marginal distribution of Y as

Yi ∼ Negbin(λi , σ
2)

where the PDF is:

fnb(yi |λi , σ2) =
Γ( λi

σ2−1 + yi )

y !Γ( λi
σ2−1)

(σ2 − 1

σ2
)yi (σ2)

− λi
σ2−1

Notes:

1. λi > 0 and σ > 1

2. E[Yi ] = λi and Var[Yi ] = λiσ
2. What value of σ2 would be evidence

against overdispersion?

3. We still have the same old systematic component: λi = exp(Xiβ).
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Counts: Negative Binomial Model

Negative binomial

In the problem set, you’ll be asked to take this count model and use it to
find the MLE for some data.

One thing that will help code this likelihood in R is knowing that Γ(·) is the
gamma function, which is a generalization of factorials for non-integers.
Note: The gamma function is a completely separate from the gamma
distribution.

In R, the function is gamma().
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Counts: Negative Binomial Model

Other Models

Note that there are many other count models:

Generalized Event Count (GEC) Model

Zero-Inflated Poisson

Zero-Inflated Negative Binomial

Zero-Truncated Models

Hurdle Models
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Counts: Negative Binomial Model

Questions so far?
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Duration Model Basics

What are duration models used for?

Survival models = duration models = event history models

Dependent variable Y is the duration of time that observations spend
in some state before experiencing an event (aka failure, death)

Used in biostatistics and engineering: i.e. how long until a patient dies

Models the relationship between duration and covariates (how does
an increase in X affect the duration Y )

In social science, used in questions such as how long a coalition
government lasts, how long a war lasts, how long a regime stays in
power, or how long until a legislator leaves office

Observations should be measured in the same (temporal) units, i.e.
don’t have some units’ duration measured in days and others in
months
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Duration Model Basics

Why not just use OLS?

Three reasons:

1. OLS assumes Y is Normal but duration dependent variables are
always positive (number of years, number of days. etc.)

2. Duration models can handle censoring
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Observation 3 is censored in that
it has not experienced the event
at the time we stop collecting
data, so we don’t know its true
duration
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Duration Model Basics

Why not use OLS?

3. Duration models can handle time-varying covariates

If Y is duration of a regime, GDP may change during the duration of
the regime
OLS cannot handle multiple values of GDP per observation
You can set up data in a special way with duration models such that
you can accomodate time-varying covariates
We won’t cover this today but its the same principle as censoring
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Duration Model Basics

Duration/Survival Model Jargon

Let T denote a continuous positive random variable representing the
duration/survival times (T = Y )

T has a probability density function f (t)
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Duration Model Basics

Duration/Survival Model Jargon

F(t): the CDF of f (t),
∫ t
0 f (u)du = P(T ≤ t), which is the probability of

an event occurring before (or at exactly) time t

Survivor function: The probability of surviving (i.e. no event occuring)
until at least time t: S(t) = 1− F (t) = P(T > t)

Eye of the Tiger: 1982 album by the band Survivor, which reached
number 2 on the US Billboard 200 chart.
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Duration Model Basics

Duration/Survival Model Jargon

Hazard rate (or hazard function): h(t) is roughly the probability of an
event at time t given survival up to time t

h(t) = P(t ≤ T < t + τ |T ≥ t)

= P(event at t|survival up to t)

=
P(survival up to t|event at t)P(event at t)

P(survival up to t)

=
P(event at t)

P(survival up to t)

=
f (t)

S(t)
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Duration Model Basics

Relating the Density, Survival, and Hazard Functions

f (t)︸︷︷︸
density function

= h(t)︸︷︷︸
hazard function

· S(t)︸︷︷︸
survival function
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Duration Model Basics

Modeling with Covariates

We can model the mean of the duration times as a function of covariates
via a link function g(·)

g(E [Ti ]) = Xiβ

and estimate β via maximum likelihood.
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Duration Model Basics

How to estimate parametric survival models

They might seem fancy and complicated, but we estimate these models
the same as every other model!

1 Make an assumption that Ti follows a specific distribution f (t) (i.e.
choose the stochastic component).

2 Model the hazard rate with covariates (i.e. specify the systematic
component).

3 Estimate via maximum likelihood.

4 Interpret quantities of interest (hazard ratios, expected survival
times).
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Duration Model Basics

What’s Special About Survival Models?

Censoring:

... it makes modeling a little tricky.
But not too tricky
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collected the data, so we don’t know its
true duration.
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Duration Model Basics

Censoring

Observations that are censored give us information about how long they
survive.

For censored observations, we know that they survived at least until some
observed time, tc , and that the true duration, t is greater than or equal to
tc .

For each observation, let’s create a censoring indicator variable, ci , such
that

ci =

{
1 if not censored
0 if censored
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Duration Model Basics

Censoring

We can incorporate the information from the censored observations into
the likelihood function.

L =
n∏

i=1

[f (ti )]ci [P(Ti ≥ tci )]1−ci

=
n∏

i=1

[f (ti )]ci [1− F (ti )]1−ci

=
n∏

i=1

[f (ti )]ci [S(ti )]1−ci

So uncensored observations contribute to the density function and
censored observations contribute to the survivor function in the likelihood.
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Duration Model Basics

Next week

Next week we’ll go through a couple specific examples of duration models,
as well as some stuff about assessing model fit
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Duration Model Basics

Questions?
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